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ON THE NOTION OF A SOLID IN A MAGNETIC FIELD* 

A.A. BUROV and G.I. SU8~~LOV 

The problem of the motion of a magnetic solid in a constant uniform 
magnetic field, taking gyromagnetic effects into account, is considered. 
The equations of motion are derived, the Hamiltonian structure is studied, 
and the cases of integrability indicated. Certain classes of stationary 
motions are studied and their stability examined. 

The gyromagnetic effects arise because the electrons have magnetic 
and mechanical spin moments fl/. The rotation of the body causes it to 
become magnetized (the Barnett effect) and when a freely suspended body 
is magnetized, it begins to rotate (the Einsteinde Baas effect). It is 
found that gyromagnetic phenomena must be taken into account when 
analysing the motion of gyroscopic precision systems. 

1. The construction of models of continua possessing qyromaqnetic properties involves 
introducing into the defining parameters the internal angular momentum /3, 4/. Let a solid 
move through an unbounded volume of ideal incompressible fluid which is at rest at infinity, 
and in a constant uniform magnetic field h. We will assume that the velocity of the fluid 
allows of a single-valued potential. The free-energy density within the volume G occupied 
by the body has the form /4/ 

F I= Ba/(8n) - M-B -I- F, (M) + Sa.M,‘g W) 

where B is the magnetic induction, (divB = 0), M is the magnetic moment per unit volume, g 
is the gyromagnetic ratio, and Sk is the angular velocity of rotation of the body. Then 
H I= ctndF/~?H =I B - 4nM will be the magnetic field strength, (rot H = 0), k = -LlF/aP = -M/g 
the volume density of the internal mechanical moment. We shall assume that the system is in 
thermal equilibrium, and that the energy dissipation can be neglected. Then BF/aM=O and 
hence B = dF,/dM + Q/g. 

Let the fluid be linearly magnetizable. Then the magnetic field will be given, in the 
magnetostatic approximation with the position and angular velocity St of the body both fixed, 
by the following equations and boundary conditions: 

divB=O, rotH=O; [Q,'j=O, [H,]=O; H-h--+0, Ix{-+00 
B==p,H, XEC-==R*\G 

(1.2) 

where b is the constant uniform magnetic field strength and pz is the magnetic permeability 
of the fluid. 

Using the solutions of problem (l-2), we shall consider the free energy of the system 

Q = 
%( 

F-. -&bzjdz (1.3) 
I 

where P is obtained from (1.1) when x CZG, and F = (8~)-i~*H~ when x CZG-. 
Let us calculate the variation of @ when h and 611 vary. According to (1.2) and (1.31, 

&D=\ ~(H.8B-~~h.6h)dr-~k.6ndr 
ii8 

We shall write the expression withinthebrackts in the first integrand in the form 

-(B-~*H).~h+H.~(B-~~)+(B-~*h).~h= 
-(B-~*H).~h+div[~(A-A~)xH+(A-A~)x~h] 

where A and A, are the vector potentials of the fields B and H,= PzH respectively. By 
virtue of (1.2) the integral of the second term vanishes. Denoting by 
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m=&I(B-p3H)d% KI= 
G 

(I.41 

the total magnetic and total internal mechanical moment of the 

6@ = -m.Sh - K1.6Q 

Formula (1.5) enables us to determine the dependence of Q, 

system, we obtain 

(1.5) 

on h and 0, provided that 
the quantities m and K1 have already been found fromthe solution of problem (1.2). 

In the orthogonal Ozkzx3 coordinate system rigidly attached to the body, the components 
of the tensors are allocated the indices i, j, k. The symbols 6 and ()' denote the 

variation and the time derivative in this moving coordinate system. 

Let 

F,(M) = 8'Mi + V@'MiMj + V&lijkMiM,Mk + . . . (1.6) 
where 8', e",... are given functions of the points of the body. Here and henceforth the 
repeated indices will denote summation except when they occur within the brackets. 

Since the field b is uniform, the free energy of the body @ depends, by virtue of 

(1.2)-(1.4), only on Q2 and hi. Then from (1.5) we obtain 

m = -M/ah, K1 = -~FlClQ (1.7) 

2. Let T = T(8, u) be the kinetic energy of the fluid and the body, where u is the 

velocity of the point 0. Then 

T = ~l*cco’J8,Q, + BijUjQi + vzyQq 

The motion of the body is determined using Hamilton's principle 

6 

8SLdk0, L=T-@=L(Q,u,h) (2.1) 
1, 

1, 

s,SLdt=5*Ldt+LBt,::= (2.2) 
1, 1% 
ir 
I{(--++xQ+pxu +mxh).iM+(-pP’+pxP).61)dt+ 

;K.&O + p&l -H&l::, 6d = 61 + dt, cjle = 68 + mt 

Here 61 is the total variation of the quantities when the law of motion and the time 

are both varied. The variables p = ~L/&I, K = 3LltC4-8, m = aLlah are the momentum, the mechanical 

and magnetic moment of the system, and H = K-Q +p*u - L is the energy of the system. 

Let us consider H as a function ofthevariables K, p, h. Then P = aHlaK, u = amap, 
m = -aH/ah and by virtue of (2.1), (2.2) we have 

where the variation of the law of motion vanishes when t = tr,l. Using the formulas for the 

variation 

6Q=(15ey+nxse, &1=(61)‘+ PxSl +11x68, Gh=hxM 

where 68, 61 is the infinitesimal rotation and translational displacement of the body, we 

obtain 

K’ = K x Ml/BK + p x aHlap + h x afrlah, p’ = p x BH/BK (2.3) 

The equation 

h’ = h x aHiaK (2.4) 

describing the change in the vector h in the moving coordinate system, enables us to obtain 

a closed system of equations in K, p, h. 

3. We shall adopt certain simplifying assumptions when calculating 0. We shall 

assume that the function F,(M) is given by the first two terms of expansion (1.6). Then 

the solution of problem (1.2) will depend linearly on h and Q, and by virtue of (1.2) and 

(1.4) the quantities m and K1 will be written in the form 

m, = M, - dij@)hi - qjiQi, ~2 = Xi - $,hf + or:j8, (3.1) 

where M,, xi, dij(l), q’,, alij are constants determined by the geometry of the bodyandthequantities 

pLz, 8', e", &?. Substituting (3.1) into (1.5) we obtain, apart from the additive constant, the 

expression for the free energy 

0 = - M,hj - x?& + Q@h+hj + qtQihj - l/,a:jQia, (3.2) 
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In the general case the analytic determination of the constants occurring in expression 
(3.2) is fairly complicated. We shall examine some examples in which the constants can be 
written in explicit form. 

Example 1. (cf. /5/). Let aG be an ellipsoid, eiJ = 6"p1x1+, and the quantities g, Si, I* 
be constant in G. Then the exact solution of problem (1.2) is known /2/. Here the field H 
is constant within the body and has the following form in the principal axes of the ellipsoid: 

N' = (h(i) + 4nNCi)r(i)r.;l) z(i), ri =6i+ Q'g-1, Z'= (4 +4nxN;)-1 

Here XI and ;G is the magnetic susceptibility of the fluid and the body respectively, 
x=(cLI-~)/~~c~, and Ni are the demagnetizing factors of the ellipsoid /2/. From (1.4) we 
obtain (V is the volume of the ellipsoid) 

m* = P2~7 (Xh(i)--r(i)xIP ;' ZW ) , R,'= -Q1(h(') - I'(')(1 - 4nN<.)~&))z(~)g-1 I 
Therefore we have 

Example 2. Let the form of the body be arbitrary, IL1=P%r and let g,8' be constant in 
G. Then the solution of problem (1.2) will have the form 

H'=hi-x~IL;'(njg'+ej)ViVjP, P(x)= Ix--y]-'dt, 
s G 

By virtue of (1.4) and (3.1) (V is the volume of the body), we have 

Mi= - @iV, qji=q5/, q = x&'g-', d$ = 0 

xi = X@T'%j, ,,'j= y.@T'j, T'j= f(6"+ x@"V'P) dr 
2; 

We note that taking into account in expansion (1.6) the terms of second and higher degrees, 
leads to the appearance of terms of degree higher than the second in the expansion of CD in 
terms of h and P. 

4. Let us obtain an explicit expression for the function H= H(K, p, h), using the 
assumptions of Sect.3. According to (2.1) and (3.2), 

L = T - @ = ‘/~‘jQiPj + BiQiuj + ‘/z$jUiUj - (4.1) 
?j/Q,hj- r~&))hi~j + M~# + &ji, ,ij=cOij + c,ij 

The total mechanical and magnetic moment, the momentum and the energy, have the form 

Ki = aLlag, = aijc2j + puj - qjihj + d 

m, = aL/ahj = - d$) h’ - q;Qi + Mj 
P,=a~jaoi=j3%J + $jUj 

H= ‘/&C’K’ t bi,K’pj + ‘/2Cijpipi + ‘/&ijh’h’ + 
ei,Kihj + fijp’hJ 

- QjX’Kj - bijx’pj - (Mi $- eijKj) h’ + yrcijnixj 

R 
II aij II 
II B” II 

II B’j II -‘= II au II 
II Y’j II I I 

II bij II 
II bij II II G/ I! I 

di/=di:’ i_ akmli k m qj t eij = aitt~t~. fij = bikqrk 

(4.2) 

By virtue of (4.1) the tensor o,*j which plays the part of the associated inertia tensor 
governed by the magnetic properties of the material, exerts a significant influence on the 
motion oftherigid bcxly G. 

Thus, for example, when X1>0# the matrix lel'jI is positive definite in the case of an 
ellipsoidal body (example l), therefore additional work is needed to start the rotation of 
the body, equal in magnitude when xi= 0 to the energy of the system CD in the magnetic field 

formed whenthebody rotates. It should be noted that the tensor aI0 is not, generally 
speaking, positive definite. 

In the case of ferromagnetic materials M, =.O if and only if xi = 0. This can be 
explained by the fact that when the electron spins are aligned in any one direction, then 
intrinsic non-zero magnetic and mechanical moments appear even when the body is at rest in a 
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zero external magnetic field. In general Mi = 0 does not result in xi = 0 due, for 
example, to the presence of constant ring currents within the body. 

The quantities eil, fil,x' vanish as g*m, i.e. the presence of the corresponding terms 
in (4.2) is essentially connected with the appearance of gyromagnetic effects. 

Let M, = 0, x* = 0. We denote by Z@ = &sZ, + @"inI, met = --Qtnt the mechanical and 
magnetic moment of the system due to the motion of the body, and Kr* = -q:h’, mlt= -d#)h” 
are the moments connected with the presence of an external field. We shall write Eqs.(2.3) 
and (2.4) in the form 

~==&xQ+pxu+m~xh+Mg, p’=pxQ, h’=hxLa 

where ?& = K,xO+m,xh -Kl'is the moment of forces acting on the mechanical system "body 
+ fluid" from the direction of the field and depending on gyromagnetic effects. Let us 
transform M, to the form 

M,=-(Ah)xQ-(QA)xh+A(hxQ), A+;) (4.3) 

Since <M,,Q> = 0; it follows that the forces related to the gyromagnetic effects 
are gyroscopic. -If 21; = qo-&$, then 

'11 =? we obtain 

The rotation of a rigid body with 
(4.4) was studied in /6/. 

5. We introduce, in the space of 

h), the Poisson bracket, assuming that 

MB' = e(i)j*hjQr(nfi) f qk - n,). In particular, when 

MB=-qQxh (4.4) 
a fixed point acted upon by a force moment of the form 

infinitely differentiable functions defined on FV(K, p. 

{g, $} = _eWpkt {gi, @) = -@khp (5.1) 
{h’, hf} = {p’, W} = {p’, p’} = 0 

Then we can rewrite system (2.3), (2.4) in the form /7/ 

K’={K,H), p’=(p,H), h’={h,H) (5.2) 

We note that a bracket of the type (5.1) was first used in /8/ while studying the 
Hamiltonian structure of the Kirchhoff equations. 

The functions II = pa, Is = p-h, I, = h’ commute with any smooth function on R*(K,p,h), 
i.e. the bracket (5.1) is degenerate. From (5.2) it follows that Zl,Za, Z, are first integrals. 
Restriction of the bracket (5.1) to their non-singular compatible level 

zlea (Zl, 12, I,) = {Zl = 112 > 0, I* = I,, I, = E,? > 0) 

is non-degenerate and can be reduced for certain special variables to canonical form. 
The dimensionality of Zrps is equal to six, therefore the Liouville integrability of 

system (5.2) requires two additional mutually conunutative first integrals. 
Let the level of the integrals II,, be singular. Then E,=l&, and a vector y: p = 117, 

h = E,y exists. At this level the Hamiltonian function (4.2) and the Poisson bracket (5.1) 
take the form 

(5.3) 
(5.4) 

The corresponding Hamilton equations 

K = {K, H), I” = (1’9 ff) (5.5) 

describe, in the limit when Zr = 0, the motion of the body about a fixed point. 
System (5.5) has three first integrals, namely the energy integral Joi: H, the area 

integral J1 = Key, and the integral Ja =f. Its full integrability requires another 
integral. 

There are certain cases when such an integral exists. These are the Euler, Lagrange, 
Kowalewska and Goryachev-Chaplygin cases from the problem of motion of a heavy rigid body 
about a fixed point, the Zhukovskii, Sretenskii and the dynamic symmetry cases from the 
problem of the motion of a gyrostat, and the dynamic symmetry, Klebsch, Lyapunov, Steklov 
and Chaplygin cases from the problem of the motion of a rigid body in an ideal fluid. 

Let a,j = ~i&)j, al, azt 4, be different and positive. If fl=C=O,D=rJ, then 
according to /9, lO/ there is no additional integral in the class of analytic functions when 
E#O. When B = 0, D = 0, E = 0, then an additional integral exists only in the Klebsch 
case /ll/. If B# 0, D = 0, % = 0, then the necessary conditions for the existence of an 



additional analytic integral have the form /ll/ 

B = diag (bi, b,, b3), al’ (b, - b,) + at-l (b, - bl) + ag’(bl- b,) = 

When M=x=O, then the Hamiltonian function for the case discussed 
form 

H = 'l*UiKia + lJaiK,yi + ‘/~QPUiyia 
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0 (5.6) 

in Sect.2 has the 

(5.7) 

Then, provided that a,,+,~ are different, the condition for the existence of an additional 
integral (5.6) can be reduced to the form ( (II - a,) (a* - a,) (aa - (II) = 0. Therefore, the equations 
of motion can be integrated if and only if two of the ai are the same, e.g. a,==,. Here 
the additional integral has the form J,= &. 

6. Let us consider the stationary motions of the body in the case discussed in example 
2, assuming that M = x = 0, 1, = 0. If %i%i%, then the stationary motions will be deter- 
mined by the relation 

LW,=o, U1=H+AJ1+'I,flJI (q=i,h=y) 

The stationary motions represent uniform rotations about one of the axes of inertia of 
the body, and the conditions of stability of rotation about the i-th axis have the form 
aj > (li, j # i. 

By virtue of the hydrodynamic analogy, we have the correspondence between the permanent 
rotations of a gyromagnetic rigid body and the constant screw motions of a body in a fluid. 
The stability of such motions was studied by Lyapunov /13/. 

When the body has dynamic symmetry (a,= =,=a), we have in the class of stationary 
motions in addition to the permanent motions, also regular precessions. The stationary 
motions are found from the condition 

6lJ, = 0, Us = H + hJ, + ‘l&J,- oJ, 

The above condition has the form 

"K, + (a + h) ha = 0, (a + Fv) K, + (a + p) h, = 0, a = 1, 2 (6.4) 
a,& + (as t A) h, = 0, (nr + A) A. + (as + P) h, = 0 (6.2) 

System (6.1) admitsofanon-trivialsolution(K ao, h:), provided that condition o(a+ ~)-(a+ 
h)z=O holds. Obtaining from it the expression for p and substituting it into the second 
equation of (6.2), we obtain the equation 

(aa + A) K, + (a( - a + a-'(~ + Qa) hs = 0 ('3.3) 

connecting the value of h with the values of K,= K,,.h,=h, preserved on the regular 
precessions. When K,,h, are given, a regular precession exists provided that Eq.(6.3) can 
be solved for h, i.e., when the following condition holds: 

aKo2 - 4h, (as - a) (K, + h,) > 0 (6.4) 

The regular precession is described by the equations 

K19 = Ah, sin mt, h,’ = h; sin et, K,’ = Ah, eos cot, ho = 
h, cos ot 

KS = Ko, hs = ho, h, = I/hr - ho’, A = - (a + h)/a 

where h is the strength of the external magnetic field. 
It can be shown that when the condition 

a (K, - 2Ah,)* + (as - a + a.V) (ha - h,“) > 0 

holds, the corresponding precessional motion is stable in the variables a== K,-Ah,,a= 1.2, h,, 

KS. 
In the limit, as ho-h, the regular precession transforms into a permanent rotation of 

the body about the axis of dynamic symmetry. The condition of stability of this rotation 
with respect to the variables Ki,hi has the form 

aKoa - 4h (as - a) (K, + h) > 0 (6.5) 
We note that according to (6.5) the stability of rotation of a gyromagnetic rigid body 

about the axis of dynamic symmetry depends essentially notonly onthe magnitude of the 
angular velocity, but also on the direction of rotation. 

The authors thank A.N. Golubyatnikov, A.V. Karapetyan and V.V. Kozlov for refereeing 
this paper. 
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ON THE ORBITAL STABILITY OF A PERIODIC SOLUTION OF THE EQUATIONS OF 
MOTION OF A KOVALEVSKAYA GYROSCOPE* 

A.Z. BRYUM and A.YA. SAVCHENKO 

The sufficient conditions for the orbital stability of a periodic solution 
of the equations of motion of a Kovalevskaya gyroscope in the case of 
Bobylev-Steklov integrability are obtained. 

It is difficult to expect Lyapunov stability for the unsteady motions 
of a heavy solid having a fixed point since a dependence of the vibrations 
frequency on the initial conditions is characteristic for the simplest of 
them, i.e. periodic motions /l/. Moreover, a rougher property of periodic 
solutions of the Euler-Poisson equations, orbital stability /2/, is not 
the subject of special investigations in the dynamics of a solid. The 
algorithm of the present investigation utilizes the treatment ascribed 
Zhukovskii /3/ of orbital stability as the Lyapunov stability of motion 
for a special selection of the variable playing the part of time (see /4/ 
also) and the Chetayev method /5/ of constructing Lyapunov functions from 
the first integrals of the equations of perturbed motion. This latter 
circumstance enables the Chetayevmethodtobe put in one series with the 
methods used in /l, 4, 6-9/, etc. 

1. Under the Kovalevskaya conditions the Euler-Poisson equations and the first integrals 
have the following form in dimensionless variables /lo/ 

2p' = qr, 29’ = --‘p - y’, r’, = y’ 
y’ = yfr - y’q, y” = y’p - yr, y = yq - y’p 
2 @" + q2) + r2 - 2y = 611. 2 (pv + d) + ‘7” = 21 
f + f2 + y”S zz I, (p2-q42+y)Z+(2pq+Y’)a=k* 

(1.1) 

(1.2) 
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